\qquad Date: \qquad Period: \qquad

A particle moves from A to B in the coordinate plane. Find the increments Δx and Δy in the particle's coordinates. 1) $A(-6.5,1.9), B(4.6,7.6)$

Plot the points and find the slope (if any) of the line they determine.
2) $A(-5,3), B(3,3)$

Find an equation for the vertical line and the horizontal line through the given point.
3) $(-\pi, 0)$

Write an equation for the line described.
4) Passes through $(5,-1)$ and perpendicular to the line $-7 x+8 y=-43$

Find the slope and the y-intercept of the line.
5) $4 y+2 x=4$

Graph the line.
6) $-\frac{7}{2} x-y=-7$

Find the formula for the function.
7) Express the perimeter of an isosceles triangle with side lengths $x, 5 x$, and $5 x$ as a function of the side length.

Find the domain and range.
8) $f(x)=\frac{14}{14-x}$

Graph the function on your calculator to determine the domain and range from the graph.
9) $y=\sqrt[3]{x+7}+4$

Determine if the function is even, odd, or neither.
10) $y=\sqrt{x^{2}-3}$

Graph the piecewise-defined function.
11) $f(x)= \begin{cases}4 x^{2}, & \text { for } x \leq-1, \\ 4, & \text { for }-1<x \leq 1, \\ 4 x+1, & \text { for } x>1\end{cases}$

Use the vertical line test to determine if the graph is a graph of a function.
12)

A) No
B) $Y e s$

Find a formula for the function graphed.
13)

Graph the function.
14) $y=\frac{1}{(x-3)^{2}}$

Solve the problem.
15) If $(f q g)(x)=\frac{1}{\sqrt{x}-7}$ and $f(x)=\frac{1}{x-7}$, find $g(x)$.

Graph the exponential function.
16) $y=2^{-x-4}$

Rewrite the exponential expression to have the indicated base.
17) $92 x$; base 3

Use your grapher to find the zero of the function. Round your answer to three decimal places.
18) $f(x)=6-2^{x}$

Graph the pair of parametric equations.
19) $x=2 t, y=t+2,-2 \leq t \leq 3$

Find a Cartesian equation for the curve.
20) $x=t-2, y=\frac{3}{t+7}$

Determine if the function is one-to-one.
21)

A) Yes
B) No

Find the inverse of the function.
22) $f(x)=x^{2}+6, x \leq 0$

Graph the function f as a solid curve. Then, on the same coordinate system, graph f^{-1} as a dashed curve. 23) $f(x)=\ln x$

Solve the equation.
24) $\ln (y+4)-\ln 8=x+\ln x ;$ Solve for y.

Graph the function.
25) $f(x)=\ln x+2$

Find the requested function value meeting all of the given conditions.
26) $\sin \theta=-\frac{1}{2}$ and $\cos \theta<0$; Find $\tan \theta$.

Find the requested value or interval.
27) Find the range of the function $y=7 \sin \left(3 x+\frac{\pi}{3}\right)+4$

Find the exact value of the real number y.
28) $y=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$

Find θ to four significant digits for $0 \leq \theta<2 \pi$.
29) $\sin \theta=0.4667$

Find the indicated trigonometric function, given that θ is an angle in standard position with the terminal side passing through the given point.
30) $(-6,7)$; Find $\cot \theta$.

